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Purpose. Population model analyses have shifted from using the first order (FO) to the first-order with

conditional estimation (FOCE) approximation to the true model. However, the weighted residuals

(WRES), a common diagnostic tool used to test for model misspecification, are calculated using the FO

approximation. Utilizing WRES with the FOCE method may lead to misguided model development/

evaluation. We present a new diagnostic tool, the conditional weighted residuals (CWRES), which are

calculated based on the FOCE approximation.

Materials and Methods. CWRES are calculated as the FOCE approximated difference between an

individual_s data and the model prediction of that data divided by the root of the covariance of the data

given the model.

Results. Using real and simulated data the CWRES distributions behave as theoretically expected under

the correct model. In contrast, in certain circumstances, the WRES have distributions that greatly

deviate from the expected, falsely indicating model misspecification. CWRES/WRES comparisons can

also indicate if the FOCE estimation method will improve the results of an FO model fit to data.

Conclusions. Utilization of CWRES could improve model development and evaluation and give a more

accurate picture of if and when a model is misspecified when using the FO or FOCE methods.

KEY WORDS: conditional estimation; model diagnostics; modeling; non-linear mixed effect models;
NONMEM; pharmacometrics; statistics; weighted residuals.

INTRODUCTION

Utilization of population pharmacokinetic (PK) and phar-
macodynamic (PD) models to describe clinical data is becoming
increasingly important in drug development (1,2). In order to
estimate the parameters of these pharmacometric models
various computer programs have been developed (3–6), of
which the most popular is NONMEM (Globomax, USA).
When NONMEM was first introduced the only parameter
estimation method available was the first-order (FO) method,
based on the first-order Taylor series approximation to the
population PK/PD model. Since then, improved methods of
approximating the model have been developed including the
first-order with conditional estimation (FOCE) method and
the FOCE method with interaction (FOCEI).

The FOCE methods allow for hypothesis testing during
model building (7) and generally produce less biased model
parameter estimates (8,9). As a result, the NONMEM
community has shifted from the FO method to the FOCE
and FOCEI methods. A search on pub-med for all articles that
used NONMEM for pharmacometric analysis in 2005 (search
terms: NONMEM, population pharmacokinetics and popula-

tion pharmacodynamics) revealed 131 studies, of which 15%
used the FO method, 21% used the FOCE method, 28% used
the FOCEI method, 16% used a combination of these
methods and 20% did not discuss the estimation method
employed.

Once a model has been fit to pharmacometric data it is
crucial to evaluate the goodness of that fit. The NONMEM
user_s guide (10) suggests use of the weighted residuals
(WRES), the weighted difference between the model predic-
tion and the data, as one model diagnostic. Presently, use of
the WRES is suggested by the United States_ Food and Drug
Administration (FDA) as an appropriate diagnostic for
evaluating model misspecification (11). The WRES have also
become a common model diagnostic in the literature. Of the
131 papers found in the above Pub-Med search, 50%
specifically mentioned examining the WRES during model
diagnosis, of those, 80% provided a plot of the WRES in their
publication.

The WRES, however, are always calculated based on the
FO approximation to the model. This is the case even if the
model development process has taken place using the FOCE
methods. Use of the WRES as a diagnostic when performing
modeling using the FOCE methods leads to the possibility of
misguided model development and diagnosis, or, at the very
least, less informed model development.

In this work we present a new diagnostic tool, the
conditional weighted residuals (CWRES), which are calcu-
lated in a similar manner to the WRES but based on the
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FOCE approximation. The CWRES have the advantage of
being directly related to a term in the objective function used
in the FOCE method of model fitting, thus giving more
detailed information about the fit of a model to data using
this method.

In the following sections we first present a motivating
example demonstrating the possibility of misguided model
development using the WRES as a diagnostic while
performing FOCE analysis. In this same situation we
demonstrate that use of the CWRES would not result in
such an error. Next we detail how both the WRES and the
CWRES are calculated. The CWRES are then explored in a
more systematic simulation study. Then the possibility of
using the differences between WRES and CWRES distribu-
tions as an indicator of the differences in parameter estimates
between the FO and FOCE methods is investigated. Finally,
we examine the CWRES in a real data example where the
WRES indicate some model misspecification but the model
has otherwise good fit characteristics.

BACKGROUND

Motivating Example: Misguided Model Development Using
the WRES

We simulate data for 200 individuals with 25 samples per
individual using a sigmoidal Emax model with exponential
between-subject variability (BSV), additive residual variability
(RV) and a Hill coefficient of 4.5 (i.e. a very non-linear model).
For more information on this model see the BMATERIALS
AND METHODS^ section of this paper.

Using this model and the data simulated from this model
we then re-estimate the model parameters using the FOCE
method in NONMEM. For this one simulation the difference
between the estimated and true parameter values is less than
10% for all parameters in the model, indicating that the FOCE
method does not have a problem with the fit of model to data.

Next we examine the WRES from this model fit to data.
The left graph of Fig. 1 shows the WRES as a function of the
independent variable (plasma concentration in this simula-
tion). Statistically, if the linearized model adequately
describes the data the WRES should be normally distributed
with mean zero and variance one (see BCalculating the
WRES^ section for more detail). This is clearly not the case
at plasma concentrations between 0 and 75, indicating model
misspecification (even though we know we are using the right
model!).

Using the same simulated data, we next estimate new
model parameters using a misspecified model. Misspecifica-
tion is introduced by removing the hill-coefficient, reducing
the model to a basic Emax model. As seen in the right graph
of Fig. 1, the WRES indicate that this misspecified model fits
the data better than the correct model.

As stated above, the WRES are always calculated using
the FO approximation to the model even when the FOCE
estimation method is used. Given that the model we are
simulating from in this example is highly non-linear (hill-
coefficient of 4.5); the FO approximation to the model is not
likely to be as accurate as the FOCE model approximation.
In this situation the WRES may indicate problems with
model fit (FO problems), when, in fact there are no problems
with an FOCE fit to data. The CWRES, on the other hand,
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Fig. 1. The WRES for the true and misspecified model discussed in the motivating example. In this example the WRES indicate that the

misspecified model is the better model.
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are calculated using the FOCE approximation to the model
and in such a situation could be expected to give a better
diagnostic to the FOCE fit to data.

To test this hypothesis the CWRES for both the true and
misspecified model fits to the data in the above example are
computed (details on calculating the CWRES are presented in
BThe FOCE Objective Function^ and BConditionally Weighted
Residuals (CWRES)^ sections). Figure 2 shows plots of
CWRES versus plasma concentration for the FOCE fits of
both the true and misspecified models to the simulated data.
The CWRES for the true model are clearly more normally
distributed than for the misspecified model, indicating (in
contrast to the WRES) that the correctly specified model is a
better model to describe the given data.

The Population Model and Parameter Estimation

We define our model for the vector of measurements yi
¯

for the ith individual in a population as:

yi
¯ ¼ f xi

¯; �¯; hi
¯ð Þ þ h xi

¯; �¯; hi
¯; "i

¯ð Þ ð1Þ

here xi
¯ is the vector of independent variables for an

individual_s model (time, concentration in plasma, covariate
values etc.), �¯ is the vector of population fixed effects, hi

¯ is the
vector of individual realizations of the between-subject
variability terms in the model and "i

¯ is the vector of
realizations of the residual error variability terms in the model.
h¯ and "¯ are both vectors of random variables that are
assumed to be normally distributed with mean zero and
variance W and S respectively. In the following discussion we

simplify the notation in Eq. 1 by removing xi
¯ from future

equations.
For both the FO and FOCE methods in NONMEM, the

model parameter values (�;
¯

W, S) that best fit a set of data are
determined by minimizing minus two times the logarithm of
the extended least squares objective function (OF). In its
general form (and with constants removed) we have:

OF ¼
Xm

i¼1

log Cov yi
¯ð Þj j þ yi

¯ � E yi
¯ð Þð Þ2

Cov yi
¯ð Þ

" #
ð2Þ

where Cov yi
¯ð Þ is the covariance matrix of the data given the

model, E yi
¯ð Þ is the expectation of the data given the model

and m is the number of individuals in the dataset.
Because Eq. 1 can be non-linear in both hi

¯ and "i
¯ it is

impossible to directly calculate Cov yi
¯ð Þ and E yi

¯ð Þ in Eq. 2.
As such, different varieties of linearizations to the model can
be carried out to make these calculations possible (12).

The FO Objective Function

The simplest method of model linearization is the first
order (FO) method, where the model is linearized about the
mean of the random parameters in the model (zero) using the
Taylor series approximation. Assuming no interaction be-
tween hi

¯ and "i
¯ we have

yi
¯ � f �;

¯
hi
¯ ¼ 0

� �
þ

df �;
¯

hi
¯ ¼ 0

� �

dhi
¯ � hi

¯ þ
dh �;

¯
hi
¯ ¼ 0; "i

¯ ¼ 0
� �

d"i
¯ � "i

¯

ð3Þ
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Fig. 2. The CWRES for the true and misspecified model discussed in the motivating example. The CWRES indicate that the true model

better fits the simulated data in contrast to the WRES shown in Fig. 1.
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where
df �;

¯
hi
¯¼0ð Þ

dhi
¯ indicates the derivative of f with respect to hi

¯

evaluated at hi
¯ ¼ 0 and

dh �;
¯

hi
¯¼0;"i

¯¼0ð Þ
d"i
¯ indicates the derivative

of h with respect to "i
¯ evaluated at hi

¯ ¼ 0 and "i
¯ ¼ 0 .

Using this approximation, the expectation and covari-
ance of the model in Eq. 1 are:

EFO y
*

i

� �
¼ f �

*
; �
*

i ¼ 0
� �

CovFO y
*

i

� �
¼ df �

*
;�
*

i¼0
� �

d�
*

i

� 4 � df �
*
;�
*

i¼0
� �0

d�
*

i

þdiag
dh �

*
;�
*

i¼0;"i
*¼0

� �

d"i
* �

P
� dh �

*
;�
*

i¼0;"i
*¼0

� �0

d"i
*

� �

ð4Þ

where f(.)¶ indicates the transpose of f and diag(x) indicates
the diagonal elements of the matrix x. Note that the second
term in the covariance equation is diagonal due to a further
assumption of independence between individual random
measurement errors in our model (in NONMEM, the term
is actually block diagonal if the L2 data item is used (10)).
The FO objective function can then be written as

OFFO ¼
Xm

i¼1

log CovFO yi
¯ð Þj j þ yi

¯ � EFO yi
¯ð Þð Þ2

CovFO yi
¯ð Þ

" #
ð5Þ

The FOCE Objective Function

The FOCE method uses a more advanced method of
model linearization conditioning the linearization of the
model around each individual_s empirical Bayes (post-hoc)
estimates of the between-subject variability random effects
b��PH;i :

y¯i � f �
¯
; �
¯

i ¼ b��PH; i

� �
þ df �

¯
;�
¯

i¼b��PH; ið Þ
d�
¯

i

� �¯ i �
df �

¯
;�
¯

i¼b��PH; ið Þ
d�
¯

i

� b��PH; i

þ dh �
¯
;�
¯

i¼0;"i
¯¼0ð Þ

d"i
¯ � "i

¯

ð6Þ

Linearization is still performed about the mean of the
residual error terms ("i

¯ ¼ 0 ) and done assuming no
interaction between the population random effects and the
individual random effects (the h term is not linearized about
�i
¯ ). For more information about the third term in this
linearization please see Lindstrom and Bates (13). The
expectation and covariance of the model can then be
computed as:

EFOCE

�
yi
*� ¼ f

�
�;
*

�i
* ¼ b��PH; i

�
�

df
�
�;
*

�i
* ¼ b��PH; i

�

d�i
* � b��PH; i

CovFOCE

�
yi
*� ¼

df
�
�;
*

�i
* ¼ b��PH; i

�

d�i
* �4 �

df
�
�;
*

�i
* ¼ b��PH ; i

�
¶

d�
*

þ diag

�
dh
�
�;
*

�i
* ¼ 0; "i

* ¼ 0
�

d"i
* � @i �

dh
�
�;
*

�i
* ¼ 0; "i

* ¼ 0
�
¶

d"i
*

�

ð7Þ

The FOCE objective function can then be written as:

OFFOCE ¼
Xm

i¼1

�
log
		CovFOCE

�
yi
*�		þ

�
yi
* � EFOCE

�
yi
*��2

CovFOCE

�
yi
*�



ð8Þ

Calculating the WRES

Given a model that describes the data, the square root of
the second term in Eq. 2 should be normally distributed with
a mean of zero and a variance of one (data minus the
expectation of that data divided, or normalized, by the
standard deviation of that data):

yi
* � E yi

*
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cov yi

*
� �r 2 N 0; 1ð Þ ð9Þ

Consequently, these values can be used as a diagnostic to
see if a model adequately describes the data. Note that, in the
above equation, we have not specified the way in which the
expectation and covariance on the model are calculated (e.g.
using the FO or FOCE approximations).

In NONMEM the values in Eq. 9 are computed using
the FO approximation to the model shown in Eq. 4, these
values are known as the weighted residuals (WRES)

WRES ¼
yi
* � EFO yi

*
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CovFO yi

*
� �r ð10Þ

The WRES should be N(0,1) as long as the model
adequately describes the data and the model linearization is
adequate to describe the model. Most importantly, we note
again that in the NONMEM program the WRES are always

calculated using the FO approximation to the model, even
when using the FOCE approximation. This means that, when
using the FOCE method, the WRES are not the square root
of the second term of the OFFOCE, and are consequently of
less diagnostic value. (SAS and NMLE in S-Plus similarly
utilize the FO approximation to calculate the WRES,
however they use a simplified version of the calculation in
Eq. 10, for a comparison see (14)).

MATERIALS AND METHODS

Conditionally Weighted Residuals (CWRES)

Given the poor performance of the FO method in many
situations and the creation of the FOCE and other higher
order methods to replace the FO method, it does not seem
logical to use the WRES, based on the FO approximation, to
evaluate models built using the FOCE method (or other
higher order methods). To correct the WRES for the FOCE
method, in this paper we present the CWRES. The CWRES
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are computed in the same manner as the WRES but using the
FOCE approximation to the model:

CWRES ¼
yi
* � EFOCE yi

*
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CovFOCE yi

*
� �r ð11Þ

Like the WRES, the CWRES should be N(0,1) as long
as the model adequately describes the data and the model
linearization is adequate to describe the model. The CWRES
are the square root of the second term in the OFFOCE. Using
the CWRES one would expect a more specific understanding
of what is happening in an FOCE model fit to data.

CWRES are computed using verbatim code in NONMEM
and a post processing step implemented in either R
(http://www.r-project.org) or MATLAB (Mathworks, USA).
The R version of the script has been incorporated into
version 4 of the software package Xpose (15) and is freely
available at xpose.sourceforge.net. The MATLAB script is
available by request. Automation of the CWRES computa-
tion has been developed in Perl Speaks NONMEM (16),
which automatically adds the needed verbatim code to a
NONMEM model, runs that model in NONMEM and then
runs Xpose 4 to compute the CWRES. PsN is freely available
at psn.sourceforge.net.

Tests and Graphs

Because the CWRES and WRES should both be N(0,1),
when the assumptions used in their calculations are correct,
we can use various numerical and visual tests to compare their
distributions. In this paper we compare the two distributions
through visual inspection of plots of the CWRES and WRES
versus the independent variable. Mean, variance and kurtosis
of each distribution are also examined. Kurtosis is a measure
of normality; a value larger than 3 indicates a distribution that
is more heavy tailed than a normal distribution, while a value
less than three indicates a distribution that is more peaked
than a normal distribution (17).

The Motivating Example

The model used for simulation of data (the Ftrue_ model)
in the motivating example presented in BMotivating Exam-
ple: Misguided Model Development Using the WRES^
section was a sigmiodal Emax model with exponential
between-subject variability and additive residual error:

where the model describes an individual_s vector of effect
measurements of drug X dependent on the concentration C

*
i

of the drug in plasma. Parameter values for the model were
(q1, q2, q3)=(100, 20, 4.5), W ¼ 0:5 0

0 0:5

� �
and S = 250. This

model and all other models described in this paper were
implemented in NONMEM VIb. The same models have also
been tested in NONMEM VI and no differences were found.

Using this simulated data, parameter estimates were
obtained using the FOCE method in NONMEM for both the
model described above and a misspecified model where the
value of the hill coefficient, g, was fixed to a value of one,
reducing the model to an Emax model. Parameter estimates
were compared to the values used for simulation to assess
model fit to data. For both the true and misspecified models,
WRES values were obtained from the NONMEM output and
CWRES values were computed as described in the
BConditionally Weighted Residuals (CWRES)^ section. Visual
comparison of the CWRES and WRES was then used to
evaluate each diagnostic.

Effects of Model Non-linearity on CWRES and WRES

Next, we investigated the CWRES and WRES in a more
systematic simulation study. Investigating the distributional
properties of both the WRES and CWRES as the population
model becomes more and more non-linear. Simulation and
estimation (using FOCE) was performed using the same model
as described in the motivating example, while varying the hill-
coefficient q3 between the values of 1 and 4.5. Increasing the
hill-coefficient increases the non-linear properties of the
model. No model misspecification was used in this example.

1000 datasets were simulated for each value of q3 (1, 1.5,
2, 2.5, 3, 3.5, 4 and 4.5). Parameter bias and root mean
standard error (RMSE) estimates were computed to assess
model fit as follows (18):

BIAS �kð Þ ¼ 1
�k;TRUE

1
Ne

PNe

i¼1

b��k;i � �k;TRUE

� �� 

� 100%

RMSE �kð Þ ¼ 1
�k;TRUE

1
Ne

PNe

i¼1

b��k;i � �k;TRUE

� �2
� 
1=2

� 100%

ð13Þ

where b��k;i is the estimated kth model parameter for the ith
simulation and Ne is the number of simulations (1000 in this
example). For each simulation the WRES and CWRES
values were then computed along with the mean, variance
and kurtosis of the two distributions.

FO/FOCE Differences from CWRES/WRES Differences
in FO

The potential use of the CWRES as an indicator of the
differences in parameter estimates between the FO and
FOCE methods was then examined. As the WRES are the
square root of the second term of the OFFO their calculation
should give us direct insight into what is happening with an
FO fit to data. Similarly, the CWRES are the square root of
the second term of the OFFOCE and should give us insight
into what is happening with an FOCE fit to data. However,
CWRES can be computed using the FO method in combi-
nation with a POSTHOC step in NONMEM. By comparing
the CWRES and WRES values computed during an FO fit
we may obtain information about how an FOCE fit would
differ from an FO fit.

To investigate this possibility, we examined a number of
models, each with several different sets of parameter values,
resulting in a range of models from almost linear to highly

(12 )

2191Conditional Weighted Residuals (CWRES): A Model Diagnostic for the FOCE Method



non-linear (the latter being where FOCE and FO are expected
to give different results). For each model and each set of
parameters 1000 datasets were simulated and parameter
estimates were obtained using both the FO and FOCE
methods in NONMEM. For each simulation the WRES and
CWRES values were computed along with the mean, variance
and kurtosis of the two distributions, parameter bias and
RMSE for each parameter were also computed using Eq. 13.
The average difference between the FO and FOCE parameter
RMSE (RMSEFO�FOCE ) values as well as the average
difference of the absolute values of the FO and FOCE
parameter bias BIAS FOj j� FOCEj j

� �
values were then calculated:

BIAS FOj j� FOCEj j ¼ 1
Nk

PNk

k¼1

BIASFO �kð Þj j � BIASFOCE �kð Þj jð Þ

RMSEFO�FOCE ¼ 1
Nk

PNk

k¼1

RMSEFO �kð Þ �RMSEFOCE �kð Þð Þ

ð14Þ

where Nk is the number of model parameters (e.g. Nk = 6 for
the model in BThe Motivating Example^ section). We take the
absolute value of the parameter bias in the above equation
because we are attempting to get a measure of total model
bias, thus negative bias from one parameter should not cancel
out positive bias from another parameter in the model. These
values were compared to the difference between the FO
calculated CWRES and WRES values; calculated as the
difference between the mean of the distributional measure-
ments (mean, variance and kurtosis) of the FO based CWRES
and WRES:

$MEANFO ¼MEANWRES �MEANCWRES

$VARFO ¼ VARWRES �VARCWRES

$KURTFO ¼ KURTWRES �KURTCWRES

ð15Þ

where

MEAN Cð ÞWRES ¼ 1
Ne

PNe

i¼1

mean Cð ÞWRES;FO;i

VAR Cð ÞWRES ¼ 1
Ne

PNe

i¼1

variance Cð ÞWRES;FO;i

KURT Cð ÞWRES ¼ 1
Ne

PNe

i¼1

kurtosis Cð ÞWRES;FO;i

ð16Þ

The models used in this investigation included:

Model 1 A simple one parameter model:

yi
* ¼ 1=Cli þ "i

*

Cli ¼ �1e�1;i
ð17Þ

Parameter values for the model remained
constant except for the variance associated
with hi,1 (6 separate values between 0.1 and 1)
which determined how linear the model was:
q1=1, W = (0.1–1) and S = 0.1. Simulated data
for this model had 100 individuals and five
samples per individual.

Model 2 The same set of sigmiodal Emax models de-
scribed in BThe Motivating Example^ section.

Model 3 A linear model with an exponential between
subject variability on the intercept parameter
defined for individual i as,

yi
* ¼ mi � ti

*
þ bi þ "i

*

mi ¼ �1 þ �i;1

bi ¼ �2e� 2;i

ð18Þ

Parameter values for the model remained con-
stant except for the variance associated with
hi,2 (6 separate values between 0.005 and 1)
which determined how linear the model was:
(q1, q2) = (1, 10), W ¼ 0:05 1

0 0:005� 1

� �

and S = 1.
Simulated data for this model had 200 individ-
uals, ten samples per individual, with sample
times evenly distributed between 1 and 100 min.

Model 4 A linear model with an exponential between
subject variability on the slope parameter
defined for individual i as,

yi
* ¼ mi � ti

*
þ bi þ "i

*

mi ¼ �1e�1;i

bi ¼ �2 þ �i;2

ð19Þ

Parameter values for the model remained con-
stant except for the variance associated with hi,1 (6
separate values between 0.05 and 1) which de-
termined how linear the model was: (q1, q2) = (1,
10), W ¼ 0:05� 1 0

0 0:5

� �
and S = 1. Data was simu-

lated in the same manner as for model 3.

CWRES for Real Data

We next examined the CWRES of a model describing
the PK of moxonidine first published by Karlsson et al. (19)
and later improved with the implementation of a transit-
compartment model (20). This model was selected as it
exhibited good model fit characteristics but had a WRES
distribution that was not N(0,1). We calculated the CWRES
based on the model and original data and compared the
WRES and CWRES graphically. To obtain an understanding
of what the WRES and CWRES should look like with this
model we then simulated from this model and computed the
WRES and CWRES from this simulated data.

RESULTS

Effects of Model Non-linearity on CWRES and WRES

As described in the BEffects of Model Non-linearity on
CWRES and WRES^ section of BMATERIALS AND
METHODS^, our first investigation of the properties of the
WRES and CWRES was done using the FOCE method in
NONMEM by simulating and estimating from the same model
(i.e. no model misspecification) as this model becomes more
and more non-linear. In this case the non-linearity was
induced by increasing the size of the g parameter in a
sigmiodal e-max model.
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In order to evaluate how well the FOCE method was
doing in estimating the model parameters in this example we
simulated 1,000 replicates for each of the eight different g
values investigated. From this set of parameter estimates we
computed the bias and RMSE. The bias of the parameter
estimates were between j1.82 and 0.634%, indicating good
model fit to the data. The RMSE for the parameter estimates
ranged from 1.34 to 12.8% with the estimate for !2

C50 having
the highest RMSE for each of the eight simulation setups
(range: 10.5–12.8%). These values for the RMSE of the
parameter estimates also indicate that the FOCE model fit to
data was relatively good.

With the information that the FOCE method is able to
adequately fit the models to the data we then investigated the
properties of the CWRES and the WRES as model non-
linearity increased. Because we know that the models fit the
data well we would expect the CWRES and WRES to
indicate a good fit (e.g. a normal distribution with mean zero
and variance 1). Figure 3 shows boxplots of the 1,000
replicate calculations of the mean, variance and kurtosis of
both the CWRES and WRES as the non-linearity of the
model increases (as the Hill coefficient g increases). From
this figure it is clear that the CWRES, in all cases, are more
normally distributed than the WRES (kurtosis values of 3).
In addition, the CWRES have a mean closer to zero and a
variance closer to one as theoretically expected when the
model fits the data well. The WRES, on the other hand,
especially at larger values of the Hill-coefficient, indicate
(falsely) poor model fit characteristics.

These results show that, even if the model is correct, as
model non-linearity increases WRES will begin to deterio-
rate. Alternatively, the CWRES seem to correctly indicate
good model fit to data even in the face of relatively high
model non-linearity.

FO/FOCE Differences from CWRES/WRES Differences
in FO

As described in the BFO/FOCE Differences from CWRES/
WRES Differences in FO^ section of BMATERIALS AND
METHODS^ we next investigated if the differences between
the WRES and CWRES computed using the FO method (using
the POSTHOC step in NONMEM) could give us information
about the differences in parameter estimates between the FO
and FOCE methods in NONMEM. The results of this
comparison for four different models with 6–8 different sets of
parameter values (again used to simulate different levels of
model non-linearity) are shown in Fig. 4 where the difference in
parameter estimates between the two estimation methods
(BIAS FOj j� FOCEj j and RMSEFO�FOCE) are plotted versus the
difference between WRES and CWRES using the FO method
($MEANFO, $VARFO and $KURTFO ). Figure 4 shows that,
as expected, the parameter bias and RMSE was on average
smaller for the FOCE method than the FO method (because
both BIAS FOj j� FOCEj j and RMSEFO�FOCE are positive in all six
plots). The middle column of Fig. 4 shows that, in all cases, the
mean variance of the FO calculated CWRES was less than or
equal to the mean variance for the WRES ($VARFO is always
positive). The right column of Fig. 4 shows that, in all cases, the
mean kurtosis of the FO calculated CWRES was less than or
equal to the mean kurtosis for the WRES ($KURTFO is always
positive). All six plots show a positive correlation in the data; as
the difference between the WRES and CWRES calculated
using the FO method increases, the difference between the FO
and FOCE parameter estimates increases. Additionally, the
plots suggest that when there is no difference between the
WRES and CWRES when using the FO method then the bias
and RMSE of the parameter values will not differ between the
FO and FOCE methods.
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correctly, no model misspecification. The WRES indicate model misspecification.
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Surprisingly, Fig. 4 suggests that even a small difference
between the WRES and CWRES calculated with FO indicates
a rather large average difference in bias or RMSE between
the FO and FOCE estimation methods. For example, a
change of 0.03 units in the variance between the WRES and
CWRES in FO could result in between a 10 and 25% decrease
in parameter bias for the FOCE method compared to the FO
method (see the plot in the center column and top row).
However, this study was done on only four distinct models
with 6–8 different sets of parameter values. As such, we
believe these results should be interpreted in a qualitative
manner (i.e. as FO differences between CWRES and WRES
increase so too will differences between FO and FOCE pa-
rameter estimates); an exhaustive study of many more models
must be done to achieve quantitative results.

CWRES for Real Data

Next we investigated the properties of the CWRES and
WRES in a model that was developed from moxonidine PK data
as described in the BCWRES for Real Data^ section of
BMATERIALS AND METHODS^. In this model all other

diagnostic measures indicated that the model fit the data well,
but the WRES indicated a model misspecification in the
absorption phase of the data between 0 and 2 h after dosing.
The WRES for this model are shown on the right-hand side of
Fig. 5a. When this model was presented at the PAGE
conference in 2004, it was suggested that the poor properties
of the WRES in the absorption phase of the model was a result
of small numerical difficulties NONMEM had with the transit
compartment model. However, when the CWRES are calculat-
ed for this model (shown on the left-hand side of Fig. 5a) there
is much less deviation from normal and they do not indicate
model misspecification. We interpret these results to mean that
the WRES indicate that the transit compartment model used to
model the absorption phase of the data would perform poorly
using the FO method while the CWRES indicate that the model
performs adequately using the FOCE method.

To be more certain that our interpretation of the CWRES
and WRES plots presented in Fig. 5a was correct, we
simulated data from the final model to see if we could recreate
the same plots from simulated data. By simulating we remove
the confounding factor of model misspecification from our
plots and we see what these two plots should look like if our
model was exactly correct. Figure 5b shows both the CWRES
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and WRES calculated from simulated data. We see that the
plots have similar patterns to the real data plots of Fig. 5a, with
the WRES indicating model misspecification between 0 and
2 h after dosing (even when we know that there is no
misspecification) while the CWRES do not indicate model

misspecification. These simulation results bolster our interpre-
tation of the plots of the real data CWRES and WRES. We
can now say with much more certainty that the WRES in
Fig. 5a do not indicate model misspecification and that the
CWRES indicate that the model fits well to the data.
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CONCLUSIONS

In this article we have presented a new model diagnostic
called the conditional weighted residuals. The CWRES are
calculated in a similar manner to the well known weighted
residuals but are calculated using the FOCE approximation
to the population model as opposed to the FO approximation
used by the WRES. Because of the different approximations
used in the calculations, the CWRES are directly related to
one term in the FOCE objective function as calculated by
NONMEM, while the WRES are directly related to the
analogous term in the FO objective function. As such, we can
expect the CWRES to give us relevant diagnostic information
about the fit of a population model to a set of data using the
FOCE estimation method. Alternatively, we can expect the
WRES to give similar diagnostic information when using the FO
estimation method.

As has been demonstrated in a wide variety of cases, the
FO method is often inadequate in fitting pharmacometric
data to population models, resulting in highly inflated critical
values for hypothesis testing and biased parameter estimates.
These poor properties are a consequence of the first order
linearization to the model used in the method and therefore
new methods with less extreme linearizations (such as the
FOCE and Laplace methods) have been developed. In this
work, with four simple models we have shown that, on
average, the bias and RMSE in the parameter estimates using
the FOCE method were always better than when using the
FO method (see Fig. 4).

Because the WRES are directly related to a term in the
FO objective function, we can reasonably assume that when
the FO method breaks down, so too will the WRES
calculations. That is, when models are relatively non-linear,
then the FO method will fail and so too will the WRES
calculation. If, in general, modelers are using the FOCE
method, but looking at the WRES, then in cases where the
FO method breaks down but the FOCE method performs
adequately we can expect the WRES to be a poor diagnostic
to describe how a model fits the data. In this work we have
investigated this property of the WRES with a sigmiodal
e-max model, using different values of the hill-coefficient g to
vary the non-linearity of the model. We found that even
though the FOCE method adequately estimated model
parameters the WRES had a distribution that deviated from
the theoretically expected distribution (Gaussian, mean zero,
variance one), in nearly all cases investigated, even with little
non-linearity in the model, indicating poor model fit proper-
ties. Further, in one extreme example, with data simulated
from a highly non-linear model (g = 4.5) we found that the
WRES were more normally distributed when a misspecified
model was used to fit the data (g fixed to one). This indicates
that by using the WRES as a model diagnostic when using
the FOCE estimation method, misspecified models could be
selected in the model building process. Because of this result,
we suggest substituting CWRES for all WRES type diag-
nostics used when estimating model parameters using the
FOCE method.

Even if the FO method is used in model development
(recall that, in 2005, 15% of the models in the literature have
estimated parameters using the FO method) the CWRES can
be a useful diagnostic. Because the CWRES are directly

related to a term in the FOCE objective function, but they
can be calculated using the FO method (using the POST-
HOC step in NONMEM), differences between the WRES
and CWRES calculated using the FO method can give
information about the differences in parameter estimates
between the FO and FOCE methods. In this work we have
shown that, for a select few models, as FO differences
between CWRES and WRES increase so too will differences
between FO and FOCE parameter estimates. However, in
order to understand and quantify the magnitude of this
correlation, tests should be made over a much wider rage of
different models and types of data. In our experience, the two
main reasons for using FO are, first, that some models can
not be made to run using the FOCE or FOCEI methods (due
to, e.g. stability issues in the methods) and, second, that run
times for these methods are prohibitive. As such, using the
CWRES in conjunction with the FO method could give
modelers more information about the relative confidence
they should have in their model parameters.

It is important to note that the CWRES are based on the
FOCE approximation to the model and do not incorporate
the interaction terms present in the FOCEI objective
function. The computation of weighted residuals for the
FOCEI method is more complex mathematical problem and
work is ongoing to calculate a CWRES with interaction.
However, on a practical note, when using the FOCEI
method, the FOCE method is a much closer neighbor
compared to the FO method. As such, we would still
recommend using the CWRES instead of the WRES when
model fitting with the FOCEI method.

In our view, the CWRES should be used with the FO,
FOCE and FOCEI methods for the reasons stated above.
However, implementing the code needed in NONMEM and
then computing the CWRES in a secondary step can be a
daunting task. To make this calculation easier we have
automated the process using Pearl Speaks NONMEM
(PsN) and Xpose 4. In addition, in Xpose 4 we have
developed a range of easily created diagnostic plots using
the CWRES. Both PsN and Xpose 4 are freely available on
the internet (xpose.sourceforge.net and psn.sourceforge.net).

Finally, in a less theoretical setting (and taking our own
advice), we have computed the CWRES for several models
with real, rather than simulated, data (20–22) (only one
presented in this article). All of these models had good model
fit characteristics aside from WRES distributions that were
not N(0,1) and indicated model misspecification. In all cases,
the CWRES showed markedly better distributions and did
not indicate model misspecification. We interpret these
results to mean that, for these models, the problem was with
the WRES and not misspecification of the models. Simu-
lations from the final models and subsequent calculations of
WRES and CWRES confirmed the poor properties of the
WRES for these models (even with data simulated from the
model the WRES were poor).
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